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Swelling of polyelectrolyte hydrogels using a finite element model
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Abstract

In this work, a modular finite element model is proposed to describe the swelling of a poly(acrylic acid) hydrogel for optical applications
under the influence of an electric field. The module divides the problem into five parts, depending on the specific energy domain involved. This
includes electrical, chemical, force, mechanical and optical components. Each part is then solved sequentially to provide the final result. Initial
predictions for the deformation are acceptable, and suggest that only a certain amount of energy may be available to deform the hydrogel during
the swelling process.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer hydrogels are increasingly being used as alterna-
tive materials to the more conventional engineering materials
in actuators and sensors. Some uses include artificial muscles
[1], drug delivery [2] and temperature-sensitive actuators [3].
Our group has been studying these materials for several years
as a novel type of changeable focal length (CFL) lens [4e8].
It is anticipated that if the swelling deformation and optical
properties of polymer hydrogels are controlled, the deforma-
tion and low excitation voltage required for actuation would
make these materials ideal for such an application.

Polyelectrolyte hydrogels, in particular poly(acrylic acid)
(PAAC), are the main focus of this work, as the ionisable groups
on their chains make them responsive to electrical stimulation.
One problem that is encountered in this work is the lack of quan-
titative techniques to describe the swelling of polymer hydro-
gels. This has meant that significant time and resources have
been spent in the laboratory performing experiments, some of
which have later proved unnecessary. To counter that, work
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was begun to investigate methods for simulating experiments
on a computer. Although some authors have already developed
partial models to describe the swelling of polymer hydrogels
[9e11], these models are complex and/or only focus on one par-
ticular part of the problems (for example, the ion flux through
the hydrogel). Kenkare et al. [12] and deGennes et al. [13] pro-
posed significantly simpler models and surprisingly, were able
to obtain reasonable results. This suggests that although the
processes involved in hydrogel swelling are complex, a macro-
scopic model may be able to provide useful results at a signifi-
cantly lower computational cost.

None of the aforementioned models were designed with
optical applications in mind, however, and so could not easily
be used to describe hydrogel swelling for CFL applications.
For this reason, this work attempts to build a fully descriptive
macroscopic model capable of providing quantitative results
within a short period of time. From the complexity of the equa-
tions involved, it was clear that the swelling of a hydrogel could
not be solved analytically, and that numerical techniques need to
be used. The mechanisms of hydrogel swelling were divided
into blocks based on different energy domains [14], namely
electrical, chemical, force, mechanical and optical (Fig. 1).

The Electrical module is the first part of the model, and is
currently assumed to be time invariant. For this reason, it is
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Fig. 1. Model divided into different energy domains.
placed outside the main timeloop, but could readily be added
back into the loop if required. The module calculates the electric
field that occurs in the hydrogel as a result of different electrode,
hydrogel and solvent configurations. This field is then given to
the Chemical module, which calculates the change in ion con-
centrations throughout the hydrogel. These changes in ion con-
centrations are known to cause osmotic pressure changes which
are calculated by the Force module. The pressure (or force) is
then given to the Mechanical module which calculates the
resulting deformation of the hydrogel. The Optical module is
the final module in the model, and interprets the output of the
Mechanical module to provide the final change in focal length.
Each of these modules will be discussed in more detail in the
following sections.

The hydrogel studied in this work consists of circular disks
of partially neutralised PAAC crosslinked with N,N-methylene-
bis-acrylamide (BIS). The gels are formed using thermally trig-
gered polymerisation techniques, and then placed into NaCl
solution of varying concentrations. Electrodes are attached, and
a voltage of between 1 and 5 V was applied with the resulting
deformation recorded (as shown in Fig. 2).

2. Method of simulation

Although there are a variety of numerical methods available
today, it was decided to implement this model using the finite

Fig. 2. Experimental setup modelled in this work.
element method (FEM). To simplify the resulting equations,
this work utilises symmetry to generate a two-dimensional rep-
resentation of the hydrogel/solvent system (Fig. 3). The hydro-
gel is modelled as a rectangle submerged in some fixed quantity
of solvent. The level of solvent can be adjusted by altering this
quantity. The system also comprises regions of air to the left and
right sides of the gel, which act as ‘no flux’ boundaries. The
domain is discretised using linear triangular elements, and then
solved using both forward and central difference techniques.
The model operates in a sequential form, although feedback
methods are currently being investigated for future revisions.

2.1. Electrical module

The Electrical module is the first part in the model and it
calculates the externally applied electric field in the hydrogel
region. This module is based on the assumption that Laplace’s
equation in a conductor is equivalent to Kirchoff’s current law
(KCL). Based on this assumption, the Electrical module first
assembles and then solves multiple, simultaneous instances
of the KCL for each node in the system. This provides knowl-
edge of the potential at each node, which the module can then
use to calculate the externally applied electric field.

In order to simplify the calculations and increase the oper-
ation speed, the Electrical module makes a number of assump-
tions concerning the material and system properties. The

Fig. 3. Two-dimensional representation of hydrogel and solvent.
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conductivity of the hydrogel is assumed to be homogeneous,
unchanged during polymerisation and time invariant. Dou-
ble-layer effects are also neglected. These assumptions allow
much simpler forms of the KCL to be used in the model.

In its current form, the Electrical module is limited to solving
only three well-defined electrode/hydrogel/solvent configura-
tions. These are: (1) a single point cathode at the top of the
hydrogel, with solvent around the sides of the gel only; (2) a
single point cathode at the top of the hydrogel, with solvent
around the sides and bottom of the gel; (3) a surface cathode
that completely covers the top of the hydrogel, with solvent
around the sides and bottom of the gel. The model can select
any of these configurations, and can either perform the calcula-
tions in real time or prior to simulation (depending on the user’s
requirements). Although it was initially planned to allow the
Electrical module to solve any given electrode configuration,
this was later found to be impractical. By limiting the number
of possible anode and cathode geometries, the Electrical module
is able to categorise each node in the system into one of the fol-
lowing five kinds e first column of the system (C-1), second
column of the system (C-2), general columns (C-G), column
adjacent to the centre column (C-aC) and centre column (C-C)
(as shown in Fig. 4). For example, consider a node at the edge
of the hydrogel (e.g. node V2). Current will flow from the adja-
cent node (node V3) through node V2 and then to the node below
it (node V6). For a centre node (e.g. node V20), current will flow
from nodes V6 and V21 through this node towards nodes V19
and V24.

Using these different node classifications, the Electrical
module first identifies the correct form of the KCL, and
then assembles the different KCL equations for each node
into a linear system (Fig. 5). The entire system is then solved

Fig. 4. Categorising nodes in hydrogel.

Fig. 5. Simultaneous KCL equations.
to provide a voltage potential for each node in the system. By
definition, the electric field is defined as the gradient of the
potential field, and so the Electrical module is able to calcu-
late the externally applied field resulting from different elec-
trode configurations. This field is then superimposed on the
electric field that results from the movement of charged ions
through the hydrogel region (and calculated by the Chemical
module).

2.2. Chemical module

The Chemical module is the second part of the model, and
also forms its main engine. It is responsible for calculating the
temporal and spatial changes in ion concentrations, resulting
from the diffusion and migration of each species, i. The Chem-
ical module calculates the material flux by iteratively solving
the two-dimensional diffusion equation:
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where for each species, i, D is the diffusion coefficient, C is the
concentration, U is the electrolytic mobility, z is the charge num-
ber, x and y are the system coordinates and f is the electrostatic
potential. The Chemical module solves Eq. (1) with a forward-
difference time-integration scheme using Galerkin’s method of
weighted residual. In this model, linear triangular elements are
used throughout, with the basis functions of these listed in
Appendix A. Integrating the weighted residual of Eq. (1) over
the domain, U, and boundary, G, and then simplifying to provide
the weak form given by the integral, I:
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where w is the weighting function based on the shape functions.
The fourth term in Eq. (2) describes the flux across the domain
boundary, and in this model presented some challenges. As a
result of the geometry of the hydrogel and solvent, regions of
air are present to the sides of the hydrogel and above the sol-
vent. Physically, no flux can pass into these regions, and thus
‘no flux’ boundary conditions need to be used. However, these
conditions also meant that no flux could pass from the solvent
region into the hydrogel, which is again unphysical. This model
overcomes this difficulty by solving Eq. (2) twice during each
timestep e once for the solvent region and again for the hydro-
gel region, where each of these regions has ‘no flux’ boundaries.
Thus, applying ‘no flux’ boundaries and simplifying using
integration by parts, Eq. (2) simplifies to an integral over the
domain U only:
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where the matrices [ME], [K1
E] and [K2

E] represent the mass and
stiffness matrices (broken into two parts) for each element in
the system. Since the Chemical module is implemented using
a forward-difference time-integration scheme, the concentra-
tions are calculated for the following timestep. The mass
and stiffness matrices for each element are defined by different
combinations of shape functions:
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where D is the area of the element. The Chemical module first
calculates the element matrices for each element in the do-
main, and then compiles these into global mass and stiffness
matrices, [M], [K1] and [K2]:
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where the concentration vectors, {C} are now 1� n elements
long, with n as the total number of nodes in the system. Using
the standard forward-difference equations, Eq. (7) can be rear-
ranged to give:
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which can then easily be solved for the concentration of each
node for the following timestep. In Eq. (8), [K] is equal to the
sum of [K1] and [K2]. In order to allow for reasonable compu-
tation times, this model only considers three species, namely
mobile Naþ ions (initially present in the hydrogel and solvent
regions), mobile Cl� ions (initially present in only the solvent
region) and stationary COO� ions fixed to the polymer chains
(present only in the hydrogel region). As ions move from one
region to another, they are assumed to carry water molecules
with them, and it is this extra water that the model assumes
generates the swelling of the hydrogel.

2.3. Force module

The Force module is the third part in the model and acts as an
interface between the Chemical and Mechanical modules. This
was found to be necessary as the Mechanical module requires
force as an input, but the Chemical module only calculates
the change in ion concentrations (Eq. (1)). Using these changes
in ion concentrations, the Force module calculates the osmotic
pressure (force) on the hydrogel generated by the differences in
the chemical potential between the hydrogel and solvent
regions.
Currently, the Force module analyses the swelling behav-
iour of polymer hydrogels within the framework of the
FloryeRehner (FeR) theory [15], the main basis of which is
the osmotic pressure (p). Although the FeR theory is gener-
ally regarded as only being accurate for ideal cases, most
gel swelling models also utilise it and so it is used in this
model. According to the FeR theory, the total osmotic pres-
sure on the hydrogel can be considered to be made up of three
terms: the osmotic pressure due to ionic interactions (pion), the
osmotic pressure due to polymer/solvent mixing (pmix) and the
osmotic pressure due to the elasticity of the polymer chains
(pelas). These can be written as:
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where R is the molar gas constant, T is the temperature, Ci
G

and Ci
S are the concentrations of mobile species i in the hydro-

gel and solvent regions, VS is the volume of solvent, vP is the
volume fraction of polymer in the hydrogel, c is the Florye
Huggins interaction parameter, N is the average number of
segments in the network and v0 is the volume fraction of the
network after synthesis. In this model, the elastic restoring
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force generated by the polymer chains is calculated in the
Mechanical module, and so Eq. (11) is not used in the Force
module. It is also important to note that these three osmotic
pressures are not equally applied to every node in the
system e for example, Eq. (9) has terms for the concentration
in both the solvent and hydrogel regions, and so this model
acts at the gel/solvent boundary. The osmotic pressure due
to polymer/solvent mixing is applied to every node in the sys-
tem, however, as this pressure serves to expand the overall gel.
This idea is illustrated in Fig. 6.

During each timestep, the Force module uses the change in
ion concentrations (calculated by the Chemical module) to
calculate the resulting osmotic pressure on each node in the
system. With knowledge of the dimensions and surface areas
of the hydrogel region, the Force module then converts this
osmotic pressure into a force on each node. The resulting force
vector is then used as input for the Mechanical module.

2.4. Mechanical module

The Mechanical module is the penultimate part of the
model, but is the final module that provides results needed
by the other modules. This module receives information about
the magnitude, direction and location of forces being applied
to the hydrogel from the Force module. The Mechanical mod-
ule then calculates the predicted nodal deformations resulting
from these forces, which can be displayed graphically. The
basis of the Mechanical module is the standard equation of
dynamic motion:

½M�
�

€d
�tþ½K�fdgt¼ fFgt ð12Þ

where [M] and [K] are the mass and stiffness matrices, {F} is
a vector of input forces and {d} is the displacement of the no-
des (Fig. 7). In this model, any damping is neglected.

The mass matrix in Eq. (12) provides the inertial term in the
equation, and its exact form depends on the shape functions of
the elements used. In this model, all of the module utilise the
same shape functions for linear triangular elements, which are
given in Appendix A. For each element, the mass matrix is
given by:
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where the integral is taken over the entire element area. r is
the mass density and [N] is given by:

N ¼
	

H1 0 H2 0 H3 0
0 H1 0 H2 0 H3



ð14Þ
Eq. (13) can be simplified to give the more common form
of the mass matrix:
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which is known as the consistent mass matrix. Eq. (13) can
also be substituted with the lumped mass matrix which can
be easier to implement.

The element stiffness matrix provides the elastic response
of the hydrogel, which in this model is assumed to obey linear
elasticity. The element stiffness matrix is given by:

½KE� ¼
1

2

Z
Ue

fsgtf3g dU ð16Þ

where s is the stress and 3 is the strain, integrated over the
entire element area (U). In linear elasticity, the strain in the
element is related to the nodal displacement, {u} through:

f3g ¼ ½B�fug ð17Þ

where [B] is the kinematic matrix, which is again dependent
on the shape functions of the elements used:

Fig. 7. Forces acting on hydrogel deform material.

Fig. 6. Osmotic pressure due to ionic interactions and mixing.
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where (xi, yi) are the x- and y-coordinates of the ith element
node. In an isotropic material with plane stress, the element
strains are also related to their respective two-dimensional
stresses through Hook’s law:

fsg ¼ ½D�f3g ð19Þ

where [D] is a material property matrix that depends on the
Young’s modulus and Poisson ratio for the material:

½D� ¼ E
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0 0
1� n

2

3
75 ð20Þ

where E is the Young’s modulus and n is Poisson’s ratio.
Once the Mechanical module has calculated the mass and

stiffness matrices for each element in the hydrogel domain,
these are assembled into the global mass and stiffness matrices
given in Eq. (12). Eq. (12) can rapidly be rearranged to allow
the Mechanical module to solve for the acceleration of each
node:

�
€d
�t¼ ½M��1ðfFgt�½K�fdgtÞ ð21Þ

where
�

€d
�t

is the acceleration, fFgt is the applied force and
fdgt is the displacement at the current timestep. The displace-
ment for each node in the system for the following timestep
can then be calculated by using the current nodal displacement
and velocity:

fdgtþDt¼ fdgtþDt
�

_d
�tþ0:5 Dt ð22Þ

where Dt is the size of the timestep. In this model, the mass
and stiffness matrices are assumed to be time invariant as
this reduces the complexity of the equations that need to be
solved by the Mechanical module. This assumption is justified
by the fact that the hydrogel behaves linearly in quasistatic
situations and because the hydrogel is extremely elastic.
Real poly(acrylic acid) hydrogels are known to consist of
regions of high and low density [16], however, which cause
spatial variations in the hydrogel elasticity. Real hydrogels
also possess viscoelastic properties (and not purely elastic)
which cause hysteresis effects. Some hydrogels can also vary
their elasticity under the influence of an electric field [17]
which further complicates material assumptions. The integra-
tion of these ideas into this model is ongoing, and will provide
better future results.

2.5. Optical module

The Optical module is the final component in the overall
model and returns the final result of the model (a change in fo-
cal length). It takes as its input the deformation calculated by
the Mechanical module and then curve-fits this to either a par-
abolic or circular surface to calculate the theoretical radius of
curvature and refractive power (Fig. 8).
While the Mechanical module calculates the deformation of
each node in the system, the Optical module currently only uses
the deformation of the upper, centre and right nodes. The defor-
mation of each of these nodes is calculated, and then the curve
fitted to provide the radius of curvature (Fig. 9). The relation-
ship between the deformation (Dy) and radius of curvature (R)
for a parabolic fit is given by:

R¼ x2

2Dy
ð23Þ

For a circular fit, the relationship between the deformation
and radius of curvature is given by:

R¼ x2 þ 4Dy2

8Dy
ð24Þ

While these approximations may appear simplistic, in prac-
tise they do provide reasonable results for the change in the
radius of the curvature. Future developments on this model
will improve the curve-fitting capabilities to include aspherical
curve fits. Future work on the Optical module will also incor-
porate information on the refractive index to allow theoretical
focal length calculations to be made.

3. Initial simulation results

Simulations were run for systems using two different elec-
trode configurations, and predicted deformation of the upper
left, centre and right nodes are shown in Fig. 10. For all three no-
des, the model predicts that the rate of hydrogel swelling does
not depend on the applied voltage, and that the deformation
grows exponentially to some maximum value. Furthermore,
the model predicts that deformation of the centre node increases
with increasing voltage, but the deformation of the left and right
nodes decreases with increasing voltage. This suggests that
there may only be a finite amount of energy available to deform
the hydrogel. Experimental validation of the model is currently
underway, and should provide insight into any limitations of this
model.

Fig. 8. Comparison of circular and parabolic curve fits.

Fig. 9. Curve fitting the deformation of the upper surface.
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4. Conclusion

The model introduced in this work represents a significant
departure from the methods normally used to solve hydrogel
swelling problems. The overall gel swelling process is broken
into different parts (modules) depending on their respective
energy domains. Each module can then be solved indepen-
dently of each other, and the results superimposed to provide
the final answer. This can be achieved quickly and efficiently,
and has the advantage that each module can be improved or
modified independently. The model makes interesting predic-
tions for the swelling rate and final deformations of the nodes,
which are in the process of being validated experimentally.

Appendix A

Linear triangular elements are used throughout this model
in both the Chemical and Mechanical modules. Linear triangu-
lar elements each have three nodes, and so have the corre-
sponding shape functions:

Fig. 10. Predicted deformation of the upper surface nodes.
H1 ¼
1

2A
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H2 ¼
1

2A
½ðx3y1� x1y3Þ þ ðy3� y1Þxþ ðx1 � x3Þy�

H3 ¼
1

2A
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ð25Þ

where (xi, yi) are the x- and y-coordinates of the ith element
node and A is the area.
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